Log In  


A simplex noise implementation that I grabbed from Github (https://github.com/weswigham/simplex) and made it work in Picotron (only had to replace bit.band with native & bit operation, and made the simplex variable global since picotron doesnt seem to support return values from files). Performance doesn't look super great (?) - I tried converting it to use userdata for vector operations but it didnt seem to improve much.

For example, the main cart code is this:

include "simplex.lua"

local colors={0,1,19,3,27,11,26,10,7}
function mapcol(t)
	t=max(0,min(1,t))
	local n=#colors
	return colors[flr(t*n)+1]
end

--n will be the "seed"
n=0
function noise(x,y)
	x+=n*10000
	return simplex.Noise2D(x,y)
	+ 0.5*simplex.Noise2D(2*x,2*y)
	+ 0.25*simplex.Noise2D(4*x,4*y)
end

function _draw()
	cls()
	flip()
	for x=0,479 do
		for y=0,269 do
			local t = (noise(x/50,y/50)+1)/2
			pset(x,y,mapcol(t))
		end
	end
	n+=1
end

Cart #simplexnoisetest-1 | 2024-09-17 | Embed ▽ | License: CC4-BY-NC-SA
2

2


This is cool and useful! Thank you for sharing, would you also share the "simplex.lua" file you modified from the original? It is quite a lot to go through, so that would be really helpful.


yes, of course,

simplex.lua
vvv

-- fixed for picotron by avi
-----------------------------------------------
---Simplex Noise
-- Original Java Source: http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
-- (most) Original comments included
-----------------------------------------------

local math = math
local table = table
local tonumber = tonumber
local ipairs = ipairs
local error = error

simplex = {}

simplex.DIR_X = 0
simplex.DIR_Y = 1
simplex.DIR_Z = 2
simplex.DIR_W = 3
simplex.internalCache = false

local Gradients3D = {{1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0},
{1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1},
{0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1}};
local Gradients4D = {{0,1,1,1}, {0,1,1,-1}, {0,1,-1,1}, {0,1,-1,-1},
{0,-1,1,1}, {0,-1,1,-1}, {0,-1,-1,1}, {0,-1,-1,-1},
{1,0,1,1}, {1,0,1,-1}, {1,0,-1,1}, {1,0,-1,-1},
{-1,0,1,1}, {-1,0,1,-1}, {-1,0,-1,1}, {-1,0,-1,-1},
{1,1,0,1}, {1,1,0,-1}, {1,-1,0,1}, {1,-1,0,-1},
{-1,1,0,1}, {-1,1,0,-1}, {-1,-1,0,1}, {-1,-1,0,-1},
{1,1,1,0}, {1,1,-1,0}, {1,-1,1,0}, {1,-1,-1,0},
{-1,1,1,0}, {-1,1,-1,0}, {-1,-1,1,0}, {-1,-1,-1,0}};
local p = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};

-- To remove the need for index wrapping, double the permutation table length

for i=1,#p do
	p[i-1] = p[i]
	p[i] = nil
end

for i=1,#Gradients3D do
	Gradients3D[i-1] = Gradients3D[i]
	Gradients3D[i] = nil
end

for i=1,#Gradients4D do
	Gradients4D[i-1] = Gradients4D[i]
	Gradients4D[i] = nil
end

local perm = {}

for i=0,255 do
	perm[i] = p[i]
	perm[i+256] = p[i]
end

-- A lookup table to traverse the sim around a given point in 4D.
-- Details can be found where this table is used, in the 4D noise method.

local sim = {
{0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
{0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
{1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
{1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
{2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
{2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};

local function Dot2D(tbl, x, y)
	return tbl[1]*x + tbl[2]*y; 
end

local function Dot3D(tbl, x, y, z)
	return tbl[1]*x + tbl[2]*y + tbl[3]*z
end

local function Dot4D( tbl, x,y,z,w) 
	return tbl[1]*x + tbl[2]*y + tbl[3]*z + tbl[3]*w;
end

local Prev2D = {}

-- 2D simplex noise

function simplex.Noise2D(xin, yin)
	if simplex.internalCache and Prev2D[xin] and Prev2D[xin][yin] then return Prev2D[xin][yin] end 

	local n0, n1, n2; -- Noise contributions from the three corners
	-- Skew the input space to determine which simplex cell we're in
	local F2 = 0.5*(math.sqrt(3.0)-1.0);
	local s = (xin+yin)*F2; -- Hairy factor for 2D
	local i = math.floor(xin+s);
	local j = math.floor(yin+s);
	local G2 = (3.0-math.sqrt(3.0))/6.0;

	local t = (i+j)*G2;
	local X0 = i-t; -- Unskew the cell origin back to (x,y) space
	local Y0 = j-t;
	local x0 = xin-X0; -- The x,y distances from the cell origin
	local y0 = yin-Y0;

	-- For the 2D case, the simplex shape is an equilateral triangle.
	-- Determine which simplex we are in.
	local i1, j1; -- Offsets for second (middle) corner of simplex in (i,j) coords
	if(x0>y0) then 
		i1=1 
		j1=0  -- lower triangle, XY order: (0,0)->(1,0)->(1,1)
	else
		i1=0
		j1=1 -- upper triangle, YX order: (0,0)->(0,1)->(1,1)
	end

	-- A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
	-- a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
	-- c = (3-sqrt(3))/6

	local x1 = x0 - i1 + G2; -- Offsets for middle corner in (x,y) unskewed coords
	local y1 = y0 - j1 + G2;
	local x2 = x0 - 1.0 + 2.0 * G2; -- Offsets for last corner in (x,y) unskewed coords
	local y2 = y0 - 1.0 + 2.0 * G2;

	-- Work out the hashed gradient indices of the three simplex corners
	local ii = i&255
	local jj = j&255
	local gi0 = perm[ii+perm[jj]] % 12;
	local gi1 = perm[ii+i1+perm[jj+j1]] % 12;
	local gi2 = perm[ii+1+perm[jj+1]] % 12;

	-- Calculate the contribution from the three corners
	local t0 = 0.5 - x0*x0-y0*y0;
	if t0<0 then 
		n0 = 0.0;
	else
		t0 = t0 * t0
		n0 = t0 * t0 * Dot2D(Gradients3D[gi0], x0, y0); -- (x,y) of Gradients3D used for 2D gradient
	end

	local t1 = 0.5 - x1*x1-y1*y1;
	if (t1<0) then
		n1 = 0.0;
	else
		t1 = t1*t1
		n1 = t1 * t1 * Dot2D(Gradients3D[gi1], x1, y1);
	end

	local t2 = 0.5 - x2*x2-y2*y2;
	if (t2<0) then
		n2 = 0.0;
	else
		t2 = t2*t2
		n2 = t2 * t2 * Dot2D(Gradients3D[gi2], x2, y2);
	end

	-- Add contributions from each corner to get the final noise value.
	-- The result is scaled to return values in the localerval [-1,1].

	local retval = 70.0 * (n0 + n1 + n2)

	if simplex.internalCache then
		if not Prev2D[xin] then Prev2D[xin] = {} end
		Prev2D[xin][yin] = retval
	end

	return retval;
end

local Prev3D = {}

-- 3D simplex noise
function simplex.Noise3D(xin, yin, zin)

	if simplex.internalCache and Prev3D[xin] and Prev3D[xin][yin] and Prev3D[xin][yin][zin] then return Prev3D[xin][yin][zin] end

	local n0, n1, n2, n3; -- Noise contributions from the four corners

	-- Skew the input space to determine which simplex cell we're in
	local F3 = 1.0/3.0;
	local s = (xin+yin+zin)*F3; -- Very nice and simple skew factor for 3D
	local i = math.floor(xin+s);
	local j = math.floor(yin+s);
	local k = math.floor(zin+s);

	local G3 = 1.0/6.0; -- Very nice and simple unskew factor, too
	local t = (i+j+k)*G3;

	local X0 = i-t; -- Unskew the cell origin back to (x,y,z) space
	local Y0 = j-t;
	local Z0 = k-t;

	local x0 = xin-X0; -- The x,y,z distances from the cell origin
	local y0 = yin-Y0;
	local z0 = zin-Z0;

	-- For the 3D case, the simplex shape is a slightly irregular tetrahedron.
	-- Determine which simplex we are in.
	local i1, j1, k1; -- Offsets for second corner of simplex in (i,j,k) coords
	local i2, j2, k2; -- Offsets for third corner of simplex in (i,j,k) coords

	if (x0>=y0) then
		if (y0>=z0) then
			i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; -- X Y Z order
		elseif (x0>=z0) then
			i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; -- X Z Y order
		else 
			i1=0; j1=0; k1=1; i2=1; j2=0; k2=1;  -- Z X Y order
		end
	else -- x0<y0
		if (y0<z0) then 
			i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; -- Z Y X order
		elseif (x0<z0) then 
			i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; -- Y Z X order
		else 
			i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; -- Y X Z order
		end
	end

	-- A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
	-- a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
	-- a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
	-- c = 1/6.

	local x1 = x0 - i1 + G3; -- Offsets for second corner in (x,y,z) coords
	local y1 = y0 - j1 + G3;
	local z1 = z0 - k1 + G3;

	local x2 = x0 - i2 + 2.0*G3; -- Offsets for third corner in (x,y,z) coords
	local y2 = y0 - j2 + 2.0*G3;
	local z2 = z0 - k2 + 2.0*G3;

	local x3 = x0 - 1.0 + 3.0*G3; -- Offsets for last corner in (x,y,z) coords
	local y3 = y0 - 1.0 + 3.0*G3;
	local z3 = z0 - 1.0 + 3.0*G3;

	-- Work out the hashed gradient indices of the four simplex corners
	local ii = i&255
	local jj = j&255
	local kk = k&255

	local gi0 = perm[ii+perm[jj+perm[kk]]] % 12;
	local gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12;
	local gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;
	local gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;

	-- Calculate the contribution from the four corners
	local t0 = 0.5 - x0*x0 - y0*y0 - z0*z0;

	if (t0<0) then
		n0 = 0.0;
	else 
		t0 = t0*t0;
		n0 = t0 * t0 * Dot3D(Gradients3D[gi0], x0, y0, z0);
	end

	local t1 = 0.5 - x1*x1 - y1*y1 - z1*z1;

	if (t1<0) then 
		n1 = 0.0;
	else
		t1 = t1*t1;
		n1 = t1 * t1 * Dot3D(Gradients3D[gi1], x1, y1, z1);
	end

	local t2 = 0.5 - x2*x2 - y2*y2 - z2*z2;

	if (t2<0) then 
		n2 = 0.0;
	else
		t2 = t2*t2;
		n2 = t2 * t2 * Dot3D(Gradients3D[gi2], x2, y2, z2);
	end

	local t3 = 0.5 - x3*x3 - y3*y3 - z3*z3;

	if (t3<0) then 
		n3 = 0.0;
	else
		t3 = t3*t3;
		n3 = t3 * t3 * Dot3D(Gradients3D[gi3], x3, y3, z3);
	end

	-- Add contributions from each corner to get the final noise value.
	-- The result is scaled to stay just inside [-1,1]
	local retval = 32.0*(n0 + n1 + n2 + n3)

	if simplex.internalCache then
		if not Prev3D[xin] then Prev3D[xin] = {} end
		if not Prev3D[xin][yin] then Prev3D[xin][yin] = {} end
		Prev3D[xin][yin][zin] = retval
	end

	return retval;
end

local Prev4D = {}

-- 4D simplex noise
function simplex.Noise4D(x,y,z,w)

	if simplex.internalCache and Prev4D[x] and Prev4D[x][y] and Prev4D[x][y][z] and Prev4D[x][y][z][w] then return Prev4D[x][y][z][w] end

	-- The skewing and unskewing factors are hairy again for the 4D case
	local F4 = (math.sqrt(5.0)-1.0)/4.0;
	local G4 = (5.0-math.sqrt(5.0))/20.0;
	local n0, n1, n2, n3, n4; -- Noise contributions from the five corners
	-- Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
	local s = (x + y + z + w) * F4; -- Factor for 4D skewing
	local i = math.floor(x + s);
	local j = math.floor(y + s);
	local k = math.floor(z + s);
	local l = math.floor(w + s);
	local t = (i + j + k + l) * G4; -- Factor for 4D unskewing
	local X0 = i - t; -- Unskew the cell origin back to (x,y,z,w) space
	local Y0 = j - t;
	local Z0 = k - t;
	local W0 = l - t;
	local x0 = x - X0; -- The x,y,z,w distances from the cell origin
	local y0 = y - Y0;
	local z0 = z - Z0;
	local w0 = w - W0;
	-- For the 4D case, the simplex is a 4D shape I won't even try to describe.
	-- To find out which of the 24 possible simplices we're in, we need to
	-- determine the magnitude ordering of x0, y0, z0 and w0.
	-- The method below is a good way of finding the ordering of x,y,z,w and
	-- then find the correct traversal order for the simplex we�re in.
	-- First, six pair-wise comparisons are performed between each possible pair
	-- of the four coordinates, and the results are used to add up binary bits
	-- for an localeger index.
	local c1 = (x0 > y0) and 32 or 1;
	local c2 = (x0 > z0) and 16 or 1;
	local c3 = (y0 > z0) and 8 or 1;
	local c4 = (x0 > w0) and 4 or 1;
	local c5 = (y0 > w0) and 2 or 1;
	local c6 = (z0 > w0) and 1 or 1;
	local c = c1 + c2 + c3 + c4 + c5 + c6;
	local i1, j1, k1, l1; -- The localeger offsets for the second simplex corner
	local i2, j2, k2, l2; -- The localeger offsets for the third simplex corner
	local i3, j3, k3, l3; -- The localeger offsets for the fourth simplex corner

	-- sim[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
	-- Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
	-- impossible. Only the 24 indices which have non-zero entries make any sense.
	-- We use a thresholding to set the coordinates in turn from the largest magnitude.
	-- The number 3 in the "sim" array is at the position of the largest coordinate.

	i1 = sim[c][1]>=3 and 1 or 0;
	j1 = sim[c][2]>=3 and 1 or 0;
	k1 = sim[c][3]>=3 and 1 or 0;
	l1 = sim[c][4]>=3 and 1 or 0;
	-- The number 2 in the "sim" array is at the second largest coordinate.
	i2 = sim[c][1]>=2 and 1 or 0;
	j2 = sim[c][2]>=2 and 1 or 0;
	k2 = sim[c][3]>=2 and 1 or 0;
	l2 = sim[c][4]>=2 and 1 or 0;
	-- The number 1 in the "sim" array is at the second smallest coordinate.
	i3 = sim[c][1]>=1 and 1 or 0;
	j3 = sim[c][2]>=1 and 1 or 0;
	k3 = sim[c][3]>=1 and 1 or 0;
	l3 = sim[c][4]>=1 and 1 or 0;
	-- The fifth corner has all coordinate offsets = 1, so no need to look that up.
	local x1 = x0 - i1 + G4; -- Offsets for second corner in (x,y,z,w) coords
	local y1 = y0 - j1 + G4;
	local z1 = z0 - k1 + G4;
	local w1 = w0 - l1 + G4;
	local x2 = x0 - i2 + 2.0*G4; -- Offsets for third corner in (x,y,z,w) coords
	local y2 = y0 - j2 + 2.0*G4;
	local z2 = z0 - k2 + 2.0*G4;
	local w2 = w0 - l2 + 2.0*G4;
	local x3 = x0 - i3 + 3.0*G4; -- Offsets for fourth corner in (x,y,z,w) coords
	local y3 = y0 - j3 + 3.0*G4;
	local z3 = z0 - k3 + 3.0*G4;
	local w3 = w0 - l3 + 3.0*G4;
	local x4 = x0 - 1.0 + 4.0*G4; -- Offsets for last corner in (x,y,z,w) coords
	local y4 = y0 - 1.0 + 4.0*G4;
	local z4 = z0 - 1.0 + 4.0*G4;
	local w4 = w0 - 1.0 + 4.0*G4;

	-- Work out the hashed gradient indices of the five simplex corners
	local ii = i&255
	local jj = j&255
	local kk = k&255
	local ll = l&255
	local gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
	local gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
	local gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
	local gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
	local gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;

	-- Calculate the contribution from the five corners
	local t0 = 0.5 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
	if (t0<0) then
		n0 = 0.0;
	else
		t0 = t0*t0;
		n0 = t0 * t0 * Dot4D(Gradients4D[gi0], x0, y0, z0, w0);
	end

	local t1 = 0.5 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
	if (t1<0) then
		n1 = 0.0;
	else 
		t1 = t1*t1;
		n1 = t1 * t1 * Dot4D(Gradients4D[gi1], x1, y1, z1, w1);
	end

	local t2 = 0.5 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
	if (t2<0) then
		n2 = 0.0;
	else
		t2 = t2*t2;
		n2 = t2 * t2 * Dot4D(Gradients4D[gi2], x2, y2, z2, w2);
	end

	local t3 = 0.5 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
	if (t3<0) then
		n3 = 0.0;
	else 
		t3 = t3*t3;
		n3 = t3 * t3 * Dot4D(Gradients4D[gi3], x3, y3, z3, w3);
	end

	local t4 = 0.5 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
	if (t4<0) then
		n4 = 0.0;
	else
		t4 = t4*t4;
		n4 = t4 * t4 * Dot4D(Gradients4D[gi4], x4, y4, z4, w4);
	end

	-- Sum up and scale the result to cover the range [-1,1]

	local retval = 27.0 * (n0 + n1 + n2 + n3 + n4)

	if simplex.internalCache then
		if not Prev4D[x] then Prev4D[x] = {} end
		if not Prev4D[x][y] then Prev4D[x][y] = {} end
		if not Prev4D[x][y][z] then Prev4D[x][y][z] = {} end
		Prev4D[x][y][z][w] = retval
	end

	return retval;

end 

local e = 2.71828182845904523536

local PrevBlur2D = {}

function simplex.GBlur2D(x,y,stdDev)
	if simplex.internalCache and PrevBlur2D[x] and PrevBlur2D[x][y] and PrevBlur2D[x][y][stdDev] then return PrevBlur2D[x][y][stdDev] end
	local pwr = ((x^2+y^2)/(2*(stdDev^2)))*-1
	local ret = (1/(2*math.pi*(stdDev^2)))*(e^pwr)

	if simplex.internalCache then
		if not PrevBlur2D[x] then PrevBlur2D[x] = {} end
		if not PrevBlur2D[x][y] then PrevBlur2D[x][y] = {} end
		PrevBlur2D[x][y][stdDev] = ret
	end
	return ret
end 

local PrevBlur1D = {}

function simplex.GBlur1D(x,stdDev)
	if simplex.internalCache and PrevBlur1D[x] and PrevBlur1D[x][stdDev] then return PrevBlur1D[x][stdDev] end
	local pwr = (x^2/(2*stdDev^2))*-1
	local ret = (1/(math.sqrt(2*math.pi)*stdDev))*(e^pwr)

	if simplex.internalCache then
		if not PrevBlur1D[x] then PrevBlur1D[x] = {} end
		PrevBlur1D[x][stdDev] = ret
	end
	return ret
end

function simplex.FractalSum(func, iter, ...)
    local ret = func(...)
    for i=1,iter do
        local power = 2^iter
        local s = power/i

        local scaled = {}
        for elem in ipairs({...}) do
            table.insert(scaled, elem*s)
        end
        ret = ret + (i/power)*(func(unpack(scaled)))
    end
    return ret
end

function simplex.FractalSumAbs(func, iter, ...)
    local ret = math.abs(func(...))
    for i=1,iter do
        local power = 2^iter
        local s = power/i

        local scaled = {}
        for elem in ipairs({...}) do
            table.insert(scaled, elem*s)
        end
        ret = ret + (i/power)*(math.abs(func(unpack(scaled))))
    end
    return ret
end

function simplex.Turbulence(func, direction, iter, ...)
    local ret = math.abs(func(...))
    for i=1,iter do
        local power = 2^iter
        local s = power/i

        local scaled = {}
        for elem in ipairs({...}) do
            table.insert(scaled, elem*s)
        end
        ret = ret + (i/power)*(math.abs(func(unpack(scaled))))
    end
    local args = {...}
    local dir_component = args[direction+1]
    return math.sin(dir_component+ret)
end

(I wanted to put that in the main post but it wouldn't show - I guess the post was just too big? thankfully here it works)

Some notes:

Admittedly I only tested simplex.Noise2D here.

The noise functions return values in the (-1, -1) range, which is why I do (x+1)/2 to remap it to (0, 1) in the demo.

You could easily remove some of the functions if you ever run into space issues (are those a thing in Picotron? maybe someone could use this in P8 too tho).

There is an option called simplex.internalCache that enables it to cache the values, but I found enabling it quickly causes you to run out of memory.

Oh, also, the repo says it's under the MIT license, consider this port the same. As far as I understand, there shouldn't be any issues using it, according to wikipedia Uses of implementations in 3D and higher for textured image synthesis were covered by U.S. patent 6,867,776, if the algorithm were implemented using the specific techniques described in any of the patent claims, which expired on January 8, 2022.


by the way, take a look at this if you need help using noise functions. Explains the octave idea, for example

https://www.redblobgames.com/maps/terrain-from-noise/


Thank you so much! I'll look for a usecase and try to do something with it :)



[Please log in to post a comment]